

www.ijramr.com

International Journal of Recent Advances in Multidisciplinary Research Vol. 08, Issue 07, pp. 7011-7014, July, 2021

RESEARCH ARTICLE

INFLUENCE OF SEED FORTIFICATION TREATMENT WITH INDUSTRIAL EFFLUENTS IN PETUNIA

Natarajan, K. and Srimathi, P.

Department of Seed Science and Technology, Tamil Nadu Agricultural University, Coimbatore - 641 003

ARTICLE INFO	ABSTRACT				
Article History: Received 25 th April, 2021 Received in revised form 14 th May, 2021 Accepted 10 th June, 2021 Published online 30 th July, 2021	Studies on evaluation of the influence seed fortification with industrial effluents in six different concentrations for 8 and 16 h soaking duration revealed that the effluents of TNPL, dye, tannery and sugarcane distillery at lower concentration of 5 per cent improved the seed and seedling quality characters. Among the effluent TNPL had more invigourative effect on seedling growth.				

Keywords:

Influence, Fortification Industrial, Effluents.

INTRODUCTION

Urbanisation and industrialization increases the environmental pollution due to disposal of city waste, sewage water and industrial effluents. Research on reuse of sewage and industrial effluents in agriculture is gaining importance in this momentum as they are the important sources of nutrients and irrigation water (Zalawadia and Raman, 1994). Industrial effluent contains many plant nutrients though in lower concentrations there is a scope for using it for beneficial purpose provided, the other technological part is developed for its safer use. Screening of crops for their tolerance to different types of effluent is the need of this industrialised world. Based on the above views, the present investigation was carried out with petunia to trace their tolerance level to the various effluents on seed quality characters through seed fortification treatments.

MATERIALS AND METHODS

The fresh seeds of petunia cv.Mix were soaked in equal volume of industrial effluents *viz*, Tamil Nadu News Print Paper Ltd (TNPL), dye, tannery and sugarcane distillery effluent diluted in different six concentration *viz.*, 5,10,20,30,40 and 50 per cent for 8 and 16 h. The seeds were shade dried for one day and evaluated for the seed and seedling quality parameters *viz.*, germination (%) (ISTA, 1999), root

*Corresponding author: Natarajan, K.

Department of Seed Science and Technology, Tamil Nadu Agricultural University, Coimbatore - 641 003.

and shoot length (cm), drymatter production 20 seedlings (mg) and vigour index (Abdul Baki and Anderson, 1973). The data gathered were analysed statistically adopting the procedure described by Gomez and Gomez (1984).

RESULTS AND DISCUSSION

The present investigation on seed fortification treatment revealed that TNPL effluent recorded higher germination (83 per cent) followed by dye industry effluent (81 per cent) and least (69 per cent) was recorded by sugarcane distillery effluent irrespective of concentration and durations. Among the six different concentrations of the effluents, irrespective of types of effluent, seeds soaked in 5 per cent recorded the maximum (87 per cent) germination which was 15 per cent higher than the germination recorded by control seed and thereafter with increase in concentration, the germination per cent reduced rhythmically and it was the minimum at 50 per cent concentration with all the analysed effluent. Regarding duration, seed fortification for 8 h recorded higher germination (81 per cent) which was 9 per cent higher than 16 h soaking. Seed fortification with TNPL effluent at 5 per cent concentration recorded the highest germination of 90 per cent among the effluents. The increase in germination percentage at lower concentration indicated the invigourative action of the treatment on seed physiological function (Biradar et al., 1989). It may be also due to the fertilizing effect at lower concentration under optimum conditions for germination (Jenath and Sahai, 1982) as reported by Behra and Misra (1982) with distillery effluent in rice, Somashekhar et al. (1984) with textile industry effluent in several field crops,

701	2
-----	---

Effluents	Concentrations in	Germination (%)			Root length (cm)			Shoot length (cm)		
(E)	percentage (C)	-			Duration	in hours (D))			
(<i>)</i>	F	8	16	Mean	8	16	Mean	8	16	Mean
Dye	5	96 (79.12)	85 (67.02)	90 (73.07)	1.0	0.8	0.9	1./	1.3	1.5
	10	92	84	88	0.9	0.8	0.9	1.6	1.2	1.4
	-	(73.59)	(66.45)	(70.02)						
	20	88	76	82	0.9	0.8	0.9	1.6	1.2	1.4
	20	(69.77)	(60.67)	(65.22)	0.7	0.8	0.8	1.6	1.1	1.4
	50	(63 47)	(60,00)	(61 74)	0.7	0.8	0.8	1.0	1.1	1.4
	40	80	74	77	0.7	0.7	0.7	1.5	1.1	1.3
		(63.47)	(59.34)	(61.41)						
	50	76	72	74	0.7	0.6	0.7	1.4	1.0	1.2
	Moon	(60.67)	(58.06)	(59.36)	0.8	0.8	0.8	16	1.2	1.4
	Wiean	(68.35)	(61.92)	(65.14)	0.8	0.8	0.8	1.0	1.2	1.4
TNPL	5	96	84	90	1.0	0.9	1.0	1.8	1.4	1.6
		(78.52)	(66.48)	(72.50)						
	10	88	80	84	1.0	0.9	1.0	1.7	1.3	1.5
	20	(69.77)	(03.31)	(00.04)	0.9	0.8	0.9	17	13	15
	20	(69.77)	(63.47)	(66.62)	0.7	0.0	0.7	1.7	1.5	1.5
	30	88	80	84	0.8	0.8	0.8	1.5	1.2	1.4
		(69.91)	(63.45)	(66.68)						
	40	84	78 (62.06)	84 (64.25)	0.8	0.8	0.8	1.5	1.1	1.3
	50	80	74	(04.23)	0.8	0.6	0.7	14	1.0	1.2
	20	(63.50)	(59.34)	(61.42)	0.0	010	0.7		110	
	Mean	87	79	83	0.9	0.8	0.8	1.6	1.2	1.4
0	-	(69.65)	(63.05)	(66.35)	0.0	0.0	0.0	15	1.2	1.4
Sugarcan	5	86 (68-10)	80 (63.45)	83 (65.78)	0.9	0.8	0.9	1.5	1.2	1.4
- C	10	84	72	78	0.8	0.8	0.8	1.4	1.0	1.2
		(66.43)	(58.06)	(62.24)						
	20	78	68	73	0.8	0.7	0.8	1.3	1.0	1.2
	30	(62.06)	(55.55)	(58.81)	0.7	0.7	0.7	1 2	0.0	11
	50	(59.36)	(53.15)	(56.26)	0.7	0.7	0.7	1.5	0.7	1.1
	40	65	56	61	0.6	0.5	0.6	1.2	0.8	1.0
		(53.73)	(48.45)	(51.09)						1.0
	50	58	42	50	0.6	0.3	0.5	1.2	0.7	1.0
	Mean	(49.01)	64	(45.00)	0.7	0.6	0.7	13	0.9	11
		(59.88)	(53.17)	(56.53)						
Tannery	5	92	80	86	0.9	0.7	0.8	1.6	1.3	1.5
	10	(73.59)	(63.51)	(68.55)	0.9	0.7	0.9	1.5	1.1	1.2
	10	87 (68.87)	(60,70)	64 78)	0.8	0.7	0.8	1.5	1.1	1.5
	20	84	72	78	0.8	0.7	0.8	1.5	1.1	1.3
		(66.48)	(58.06)	(62.27)						
	30	80	68	74	0.7	0.6	0.7	1.5	1.0	1.3
	40	(03.47)	(33.33)	(39.51)	0.6	0.6	0.6	14	0.0	12
	-10	(58.06)	(50.78)	(54.42)	0.0	0.0	0.0	1.4	0.7	1.2
	50	56	48	52	0.5	0.4	0.5	1.3	0.8	1.1
		(48.45)	(43.85)	(46.15)	0.7	0.6	0.7	1.7	1.0	1.0
	Mean	(63.15)	67 (55.41)	(59.28)	0.7	0.6	0.7	1.5	1.0	1.3
D x C	5	93	82	87	1.0	0.8	0.9	1.7	1.3	1.5
-	-	(74.83)	(65.11)	(69.97)						
	10	88	78	83	0.9	0.8	0.8	1.6	1.2	1.4
	20	(69.66)	(62.18)	(65.92)	0.7	0.8	0.8	15	1.2	1.2
	20	(67.03)	(59.44)	(63.23)	0.7	0.8	0.0	1.3	1.2	1.5
	30	81	72	76	0.7	0.7	0.7	1.5	1.1	1.3
		(64.05)	(58.04)	(61.05)						
	40	75	67	71	0.7	0.7	0.7	1.4	1.0	1.2
	50	68	59	63	07	0.5	0.6	1.3	0.9	11
	50	(55.56)	(50.41)	(52.99)	0.7	0.5	0.0	1.5	0.7	
	Mean	81	72	77	0.8	0.7	0.7	1.5	1.1	1.3
		(65.26)	(58.39)	(61.82)		<u> </u>		FC	1	EDC
Germination	1 0 907	D 0.641		<u> </u>	ED NS		1 571	2 222		3 142
Root length	0.087	0.061		0.106	NS		NS	NS		NS
Shoot length	n 0.094	0.066		0.115	NS		NS	NS		NS

Table 1 . Influence of fortification treatments with industrial effluents on seed and seedling quality characteristics at germination room

Continue ...

International Journal of Recent Advances in Multidisciplinary Research

	Concentration (C)	Drymatter production (mg 20 seedlings ⁻¹) Vigour index						
Effluent (E)		Duration in hours (D)						
		8	16	Mean	8	16	Mean	
Dye	5%	2.0	1.9	2.0	260	178	218	
	10%	2.0	1.8	1.9	230	168	199	
	20%	1.9	1.8	1.9	220	152	186	
	30%	1.9	1.7	1.8	185	143	163	
	40%	1.7	1.6	1.7	177	134	155	
	50%	1.6	1.5	1.6	160	116	138	
	Mean	1.9	1.7	1.8	205	149	177	
TNPL	5%	2.0	2.0	2.0	269	194	231	
	10%	2.0	1.9	2.0	238	177	208	
	20%	1.9	1.9	1.9	229	169	199	
	30%	1.8	1.7	1.8	202	161	182	
	40%	1.8	1.7	1.8	185	149	167	
	50%	1.7	1.6	1.7	177	119	148	
	Mean	1.9	1.8	1.8	217	161	189	
Sugarcane	5%	1.9	1.8	1.9	207	161	184	
	10%	1.8	1.7	1.8	185	130	158	
	20%	1.8	1.7	1.8	164	116	140	
	30%	1.7	1.6	1.7	148	103	126	
	40%	1.6	1.5	1.6	117	73	95	
	50%	1.6	1.4	1.5	105	42	74	
	Mean	1.7	1.6	1.7	154	104	129	
Tannery	5%	1.9	1.8	1.9	239	161	200	
	10%	1.8	1.7	1.8	200	138	169	
	20%	1.8	1.7	1.8	194	130	162	
	30%	1.7	1.6	1.6	177	110	143	
	40%	1.7	1.5	1.6	145	90	118	
	50%	1.6	1.5	1.6	101	59	80	
	Mean	1.8	1.6	1.7	176	115	145	
D x C	5%	2.0	1.9	1.9	244	173	209	
	10%	1.9	1.8	1.8	213	153	183	
	20%	1.9	1.8	1.8	202	142	172	
	30%	1.8	1.6	1.7	178	129	154	
	40%	1.7	1.6	1.6	156	112	134	
	50%	1.6	1.5	1.6	136	84	110	
	Mean	1.8	1.7	1.7	188	132	160	
CD (P=0.05)	Е	D	C	ED	DC	EC	EDC	
Drymatter production	0.092	0.065	0.113	NS	NS	NS	NS	
Vigour index	14.142	10.000	17.321	NS	NS	NS	NS	

Gomathi and Oblisami (1992) with paper mill effluent in neem, pungam and tamarind, Aggarwal *et al.* (1994) with textile industry effluent in tree species, Selvakumar (1999) with tannery effluent in neem and Kumawat *et al.*, (2001) with dye industry effluent in ragi. The reduction in germination percentage recorded at higher concentrations irrespective of effluents might be due to the presence of excess amount of toxic metobolites in the effluents causing depletion of acids from tricarboxylic acid cycle which reduces the respiration rate and cumulatively reduced the germination (Kirkby, 1968). In other words it might also be due to the higher concentrations of solids in the effluents that had retarded the seed germination due to their toxic effect.

Adraino *et al.*, (1973) also opined that the higher solid and nutrients content of the effluent might be the limiting factor and it should be the cause for delay in germination . Ponmurugan and Jayaseelan (1999) revealed that the tannery and dye industry effluent had more amount of heavy metals like chromium and lead which were toxic to seeds. But in case of sugarcane distillery effluent due to the higher content of hydrogen sulphide, dissolved solids and higher BOD and COD level created the serious problem of respiration and reduced the germination when used at higher concentrations. The seedling growth characters like root length, shoot length, The growth parameters of the seedlings increased at lower concentrations of effluents due to invigourative effect, while at higher concentrations it decreased due to toxic effect. The seedling measurements were also higher with lower duration of soaking the 8 h.. Saxena *et al.* (1986) attributed that the decrease in vigour parameters *viz.*, root length, shoot length, drymatter production and vigour index at higher concentrations due to the lower amount of oxygen available to germinated seed which reduces their energy supply through aerobic respiration resulting in restricting the growth and development of the seedlings. Thus the study revealed that the effluents of TNPL, dfye tannery and sugarcane distillery at lower concentration of 5 per cent improved the seed and seedling quality characters. Among the effluent TNPL had more invigourative effect on seedling growth.

REFERENCES

- Abdul-Baki, A.A. and J.D. Anderson. 1973. Vigour determination in soybean seed by multiple criteria. Crop Sci., 13: 630-633.
- Adraino , D.C., A.C. Chang, P.E. Pratt and R,Sharpless. 1973. Effects of soil application of dairy manure on germination and emergence of some selected crops. J. Environ. Orthal., 3 : 396-399.

International Journal of Recent Advances in Multidisciplinary Research

- Aggarwal, R.K., L. Praveenkumar and B.M. Sharma. 1994. Effect of effluents of textile industry on the growth of tree species and and soil properties in anarid environment. Indian Forester, 120 : 40-47.
- Behera , B.K. and B.N. Misra. 1982. Analysis of the effect of industrial effluent on growth and development of rice seedlings. Environmental Res., 28 : 10-20.
- Biradar, B.B., M. Mahadevappa and C.S. Shrivasamurthy. 1989. Influence of industrial pollution research. Proc. Nat. Young Scientists Semin. Environ. Pollut., University of Agricultural Science, Bangalore. 85-89.
- Gomathi , V. and G. Oblisami . 1992. Effect of pulp and paper mill effluent on germination of tree crops. Indian J. Environ. Hlth., 34 (4) : 326-328.
- Gomez, K.A. and A.A.Gomez. 1984. Statistical procedures for agricultural research of legumes seeds of different density. Agriculture, 41:47-56.
- ISTA. 1999. International Rules for Seed Testing. Seed Sci. & Technol. (Supplement Rules), 27: 25-30.
- Jenath, N. and R. Sahai. 1982. Effect of fertilizer factory effluent on seed germination and seedling growth of maize. Indian J. Ecol., 9 (2) : 330-334.

- Kirkby, 1968. Influence of ammonium and nitrate nutrition on the cation anion balance and nitrogen and carbohydrate metabolism of white mustard plants grown in dilute nutrient solutions. Soil Sci., : 105-141.
- Kumavat, D.M., K.Tuli, P. Singh and V.Gupta. 2001. Effect of dye industry effluent on germination and growth performance of tworabi crops. J.Ecobiol., 13(2) : 89-95.
- Ponmurugan, P. and S. Jayaseelan. 1999. Effect of some industrial effluents on germination and growth of *Typha* angustata. Indian J. Envt. Protection, 19 (10) : 762-766.
- Selvakumar, P. 1999. Studies on seed storage and nursery management in neem. M.Sc. (Ag.) Thesis, Tamil Nadu Agricultural University, Coimbatore.
- Somashekar, P.K., M.T.G. Gowda, S.L.N. Shettigar and K.P. Srinath. 1984. Effect of industrial effluents on crop plants. . Indian J. Environ. Hlth., 26 (2) : 136-146.
- Zalawadia, N.M. and S.Raman. 1994. J.Indian Soc. Soil Sci., 42:575
