RESEARCH ARTICLE

CIRCLING THE SQUARE WITH STRAIGHTEDGE & COMPASS IN EUCLIDEAN GEOMETRY

*Tran Dinh Son

UK

ARTICLE INFO

ABSTRACT

There are three classical problems remaining from ancient Greek mathematics which are extremely influential in the development of Geometry. They are Trisecting An Angle, Squaring The Circle, and Doubling The Cube problems. I solve the Squaring The Circle problem, of which paper is published in the International Journal Of Mathematics Trends And Technology (Volume 69, June 2023). Upstream from this method of exact “Squaring The Circle”, we can deduce, conversely/inversely, to get a new Mathematical challenge “CIRCLING THE SQUARE” with a straightedge & a compass in Euclidean Geometry. This study idea came from my exact solution “Squaring The Circle by Straightedge & compass in Euclidean Geometry”, published by IJMTT in June 2023 at https://ijmttjournal.org/Volume-69/Issue-6/IJMTT-V69I6P506.pdf for this ancient Greek Geometry problem. In this research, I adopt the ANALYSIS method to prove the process of solving this new challenge problem, which has not existed in the Mathematics field till today. The process is an inverse/converse solution solving the ancient Greek Geometry challenge problem of “Squaring The Circle”, using a straightedge & a compass. I hereby commit that this is my own personal research project.

INTRODUCTION

‘Doubling a cube’, ‘trisecting an angle’, and ‘squaring the circle’ by straightedge & compass, are the problems first proposed in Greek mathematics, which were extremely influential in the development of Geometry. The history of the “Squaring The Circle” problem dates back millennia to around 450 B.C. (nearly 2,500 years), according to Quanta, a science and mathematics magazine. Mathematician Anaxagoras of Clazomenae was imprisoned for radical ideas about the sun, and while in prison, he worked on the now-iconic problem involving a compass and straightedge [1]. The present article studies what has become the most famous for these problems, namely the problem of squaring the circle or the quadrature of the circle, as it is sometimes called [2]. One of the fascinating aspects of this problem is that it has been of interest throughout the history of mathematics. From the oldest mathematical documents known up to today, the problems and related problems concerning π have interested both professional and non-professional mathematicians. In geometry, “straightedge and compass” construction is also known as Euclidean construction or classical construction [3]. Despite the proof of the impossibility of "squaring the circle," the problem has continued to capture the imaginations of mathematicians and the general public alike, and it remains an important topic in the history and philosophy of mathematics. In 2022, I solved the “Trisecting An Angle” problem with straightedge and compass [4], and published it in the IJMTT journal as a counter-proof to the Wantzel, L. proof in 1837 [5].

Although the above ancient Greek Maths Challenges are closely linked, I chose to solve the “Squaring The Circle” problem as my second research study after solving the “Trisecting An Angle” exactly and successfully. They were then published in the IJMTT, [4] and [6]. In June 2023 I solved exactly and accurately the ancient Greek problem that has challenged mathematicians for over 2500 years - “Squaring The Circle” with a straightedge & compass. Then, the International Journal Of Mathematics Trends And Technology (IJMTT) published this paper on 23 June 2023 [6]. After the paper was published, an idea derived from the solved result to create a new
mathematical challenge, which had not existed before. The idea is as
follows:

"If we can square a given circle then how about to circle a given
square, inversely/conversely". The following diagram illustrates this
concept.

In seeking the solutions to many mathematical problems, geometers
developed a special technique, which they called “analysis”. They
assumed that the problem had been solved, and then, by investigating
the properties of this solution, worked back to find an equivalent
problem that could be solved based on the givens. To obtain a
formally correct solution to the original problem, the geometers
reversed the procedure. First, the data were used to solve the
equivalent problem derived in the analysis, and from the solution
obtained, the original problem was solved. In contrast to this analysis,
this reversed procedure is called “synthesis”. I adopted the technique
“ANALYSIS” to solve accurately the “Squaring The Circle” problem
with only a straightedge & compass [24]. I also used the technique
“ANALYSIS” to solve the current challenge problem “CIRCLING
THE SQUARE”, derived from my “Squaring The Circle” solution
mentioned above. I hereby commit that this is my own personal
research project.

It is not saying that a circle of equal area to a square does not exist. If
the square has an area equal to A, then a circle with a radius
\(r = \frac{\sqrt{a}}{\pi} \)
has the same area. Moreover, it is not saying that it is impossible,
since it is possible, under the restriction of using only a straightedge
and a compass [2].

This thesis paper includes a new geometrical shape defined as a
“Conical-Arc,” a proof of the intersection of an arbitrarily given
square and a circle with the same area as the given square. In addition,
proofs of some theorems show that the intersection of the square and
the resulting circle is a regular octagon inscribed in the given square.

Lao Tzu (Author of Tao Te Ching):

“The great Tao is simple, very simple!”
(Lão Tử - Đạo Đức Kinh: Đại Đạo thì giản dị, rất giản dị !)

Proposition

Definition 1: “Conical-Arc” shape

Given a circle \((O, r)\) and an angle \(\overline{BAC}\) with its vertex outside the
circle such that the bisector of the angle passes through the centre \(O\)
of the circle, then the special shape formed by the 2 sides of the angle
and arc \(\overline{DE}\) can be called a Conical-Arc (in Figure 1 below, the red
shape \(ADE\) is a Conical-Arc). If \(\overline{BAC}\) is a right angle then the shape
\(ADE\) is called a Right-Conical-Arc.

Theorem 1:

If there is a circle \((O, r)\) of area \(\pi a^2 = a^2\), of which the centre
coincides with the centre of a given square \(ABCD\) (yellow colour in
Figure 2 below), side \(a\) and area \(a^2\),

then

a. The circumference of the circle \((O, r)\) intersects the square
\(ABCD\) at 8 points \(a, b, c, d, e, f, g\) & \(h\).

b. Square \(ABCD\) and circle \((O, r)\) make 4 equal circle segments,
attached to 4 sides \(AB, BC, CD\) & \(DA\) of the given square
\(ABCD\) and located outside this square (in Figure 2
below). The result of this shows the areas of the 4 Right-
Conical-Arcs are equal.

c. The areas of the four Right-Conical-Arcs formed by the four
right angles \(\overline{A}, \overline{B}, \overline{C}, \overline{D}\) and the four circle arcs \(ha, bc, de\) &
gf of the circle \((O, r)\) are equal to the areas of the four circle
segments mentioned in section b. above.

Proof

a. Consider circle \((O, OA)\), which is the circumscribed circle of
the given square \(ABCD\) (orange colour in Figure 2 below).

This circle occupied an area larger than area \(a^2\) of the given square
\(ABCD\) because area \(\pi a^2\) of the circle is larger than area \(a^2\) of
the square.

Then, consider the inscribed circle (blue colour in Figure 2 below) of
the square, which has an area \(\pi a^2\) less than the area \(a^2\) of the given
square \(ABCD\). And then,

\(\pi a^2 < a^2 < \pi a^2 \)(1)

Thus, by (1) circumference of the concentric circle \((O, r)\) with area \(a^2\)
is located in between the circumscribed circle \((O, OA)\) and the
inscribed circle (blue colour) of the square and intersects the 4 sides
of the concentric square at 8 points \(a, b, c, d, e, f, g, h\), as required
(Figure 2 below).
Figure 2. Four small segments (bordered by yellow line and black arc) locate above side AB, below side CD, and left & right of sides AC & BD of the square ABCD.

a. In section a., the circle (O, r) cuts four sides AB, BC, CD, and DA of the given square at a, b, c, d, e, f, g, and h (Figure 3 below). Therefore, the intersection of the square and the black circle (O, r) shows us four circular segments, described in Figure 3 below, by the four regions limited between arcs ab, cd, ef, and gh and the four line segments (red colour in Figure 3 below).

- Because the circle (O, r) and square ABCD are concentric, the distances from the four line segments ab, cd, ef, and gh to the centre O are equal. This result shows that the above four circular segments are equal (Figure 3).
- This concentric property of the circle (O, r) and the square ABCD results in the four areas of the four Right-Conical-Arcs Aah, Bbc, Cde, and Dgf being equal (Figure 3 below).

b. Aim to prove the areas of the four Right-Conical-Arcs formed by 4 right angles \(\overline{AB}, \overline{CD}, \overline{EF}, \overline{GH} \), and 4 arcs of the circle (O, r) are equal to areas of the 4 segments in section b. above.

Assume there exists a circle (O, r) that is concentric to the given square ABCD with side a, and has the same area as the area of the square \(a^2 \). By the constraint of the assumption above {the area of the square \(a^2 \) = the area of the circle \(\pi r^2 \)},

either the intersection has to include these 4 circle segments to be equal to the area \(\pi r^2 \) of the circle (O, r),
or the intersection has to include these 4 Right-Conical-Arcs to be equal to the area \(a^2 \) of the square.

Therefore, the areas of the four equal Right-Conical-Arcs Aah, Bbc, Cde & Dgf formed by the 4 right angles \(\overline{AB}, \overline{CD}, \overline{EF}, \overline{GH} \), and 4 equals of the four equal circle segments are equal (Figure 4 below).

Figure 3. Four equal areas of the 4 circle segments, described by the 4 regions limited between the arcs ab, cd, ef & gh (black colour) and the 4 line segments (red colour). And also 4 equal areas of the 4 Right-Conical-Arcs Aah, Bbc, Cde, and Dgf being equal (Figure 3 below).

Figure 4. The intersection area of the square and the circle (O, r) needs EITHER the 4 areas of the 4 circle segments ab, cd, ef & gh to be equal to the area \(\pi r^2 \) of the circle (O, r) OR the 4 areas of the 4 right Conical-Arcs Aah, Bbc, Cde & Dfg to be equal to the area of the given square ABCD.

Theorem 2: “ANALYSIS THEOREM”

Given a square ABCD with area \(a^2 \). If there exists a circle (O, r) with area \(\pi r^2 = a^2 \) (assumed), which is concentric with the square ABCD, then 4 sides of the square ABCD are overlapped 4 non-consecutive sides of a regular octagon abcdedegfh, which is inscribed in the circle (O, r).

Proof

Assuming that there exists a circle (O, r) of area \(a^2 \) – black colour in Figure 5 below, which is concentric with the given square ABCD of area \(a^2 \), then by b. in section 2.2 of Theorem 1, the four circle segments, formed by the circle (O, r) at four sides of ABCD, are equal.

Figure 5. abcdedegfh (red and black colours) is the regular Octagon inscribed in Circle (O, r).
Consider the area of the Conical-Arc Aah in Figure 5 above (as defined in Definition 1) of vertex A of the square ABCD. From the expression \[\text{area of ABCD} = \pi r^2 \] of the circle \((O, r)\), we obtain the following similar/equivalent expressions:

\[\text{the area of the Conical-Arc Aha} = \text{the area of the circle segment ab (red colour)} \]
\[\text{the area of the Conical-Arc Bbc} = \text{the area of the circle segment cd} \]
\[\text{the area of the Conical-Arc Dde} = \text{the area of the circle segment ef} \]
\[\text{the area of the Conical-Arc Cfg} = \text{the area of the circle segment gh} \]

Note that all expressions (2), (3), (4) & (5) above are illustrated in Figure 5 above and Figure 6 below.

Figure 6. The inscribed squares ABCD (red and black colours) & EFGH (blue colour) of the circle \((O, R)\).

Let the given square ABCD, the circumscribed circle \((O, R)\) – green colour - of this square ABCD, and the assumed circle \((O, r)\) of area \(a^2\) (black colour) all be concentric. Then, the extended arc chord ah of \((O, r)\), in Figure 6, meets the circumscribed circle \((O, R)\) – marked green dash in Figure 6 above – at E and H. Connect the diameter of \((O, R)\) which gets through E and O. From E, draw a symmetric chord to EH that meets the green dashed circle \((O, R)\) at F. In the special octagon abedfg, inscribed in the given circle \((O, r)\) with four equal and parallel side pairs, section c. of Theorem 1 shows that EF is the symmetric chord of EH through the symmetric EO-axis (green colour). From section c. of Theorem 1 above, the distances between O and eight sides of the regular octagon abedfg, the inscribed circle \((O, \frac{a}{2})\) of this octagon (red colour in Figure 7 below) is also the inscribed circle of the given square ABCD. Thus, this circle had a radius of \(\frac{a}{2}\) (Figure 7).

Figure 7. The inscribed circle \((O, \frac{a}{2})\) – red colour - of the given squares ABCD (red and black colours).

Theorem 3: “Ruler Theorem”.

The circle \((O, r)\) of area \(a^2\), equalling the area \(a^2\) of the given square ABCD of side \(a\), and mentioned in the Analysis Theorem, creates the inscribed circle \((O, \frac{a}{2})\) of the square. This circle \((O, \frac{a}{2})\) is called the RULER of the “CIRCLING THE SQUARE” problem.

Proof: According to Theorems 2 and 3 in Sections 2.3 & 2.4, the blue circle \((O, \frac{a}{2})\) in Figure 8 below is the inscribed circle in both the given square ABCD and the regular octagon abedfg. This octagon is also an inscribed regular octagon of the resulting circle \((O, r)\) of area \(\pi r^2 = a^2\) and \(r = \frac{a}{2}\).

Note that the resulting circle \((O, r)\) of area \(\pi r^2 = a^2\) equalling the area of the given square ABCD is unconstructed by straightedge & compass because its radius is the irrational number \(r = \frac{a}{2}\).

However, this RULER THEOREM shows us a RULER of the “CIRCLING THE SQUARE” problem, which can be used to construct the resulting circle \((O, r = \frac{a}{2})\) with a straightedge & compass, as this RULER of the “CIRCLING THE SQUARE” problem is proved a circle \((O, \frac{a}{2})\) having radius \(\frac{a}{2} = \frac{1}{2}\) side of the given square of the “CIRCLING THE SQUARE” problem.
The resulting circle \((O, r = \frac{a\sqrt{2}}{2})\),

\[r^2 = a^2 \Rightarrow r^2 = \frac{a^2}{2} \Rightarrow r = \frac{a\sqrt{2}}{2}. \]

Figure 8. The blue circle \((O, \frac{a}{2})\) that inscribes in both the given squares \(ABCD\) (red and black colours) and the octagon abcdegh (red colour) is the RULER OF THE “CIRCLING THE SQUARE” problem, mentioned in Theorem 4 above.

Theorem 5: Solution for “Circling the Square”

It is possible to construct a circle, which has the same area as the area \(a^2\) of a given square \(ABCD\) (side \(a\)) with a straightedge and a compass.

Proof: Given a square \(ABCD\) of side \(a\), \(a \in \mathbb{R}\) and area \(a^2\), then by the Definition 1 and the Theorems 1, 2, 3 & 4 above, we have the Ruler of the “Circling The Square” problem, which is the inscribed circle \((O, \frac{a}{2})\) of both the square and the inscribed regular octagon of the square. This circle \((O, \frac{a}{2})\) can be constructed using a straightedge and a compass.

Meanwhile, the circumscribed regular octagon abcdegh of the circle \((O, \frac{a}{2})\) is also constructed by a straightedge and compass (Figure 9 below). Finally, the circumscribed circle \((O, r)\) with area \(\pi r^2 = a^2\) and \(r = \frac{a\sqrt{2}}{2}\) of the octagon is constructed by a straightedge and compass, as its radius \(r\) is the constructive distance from the vertex \(a/b/c/d/e/f/g\) or \(h\) to the centre \(O\) (Figure 9).

Construction Solution: From the above sections 2.1, 2.2, 2.3, 2.4, 2.5, and 2.6, the construction of the exact solution for the “CIRCLING THE SQUARE” problem with a straightedge and compass is as follows:

a. For the given square \(ABCD\) side \(a\), use a straightedge and a compass to draw two line segments that divide the square into four equal parts. Then, draw its inscribed blue circle \((O, \frac{a}{2})\) and its diagonals AC and BD (the 1st image in Figure 9 below).

b. Use a straightedge and compass to draw the regular octagon abcdegh, which circumscribes the circle \((O, \frac{a}{2})\) by NOTE that this octagon has 4 sides perpendicular to the 2 diagonals of square \(ABCD\) and the other 4 sides overlaps the 4 sides of \(ABCD\). Then, in the octagon, use the distance from any of its vertexes \(a, b, c, d, e, f, g\) and \(h\) to the centre \(O\) to construct the circle \((O, r)\), area \(\pi r^2 = a^2\), and \(r = \frac{a\sqrt{2}}{2}\) (the 2nd image of Figure 9 above).

This circle \((O, r)\), area \(\pi r^2 = a^2\) and \(r = \frac{a\sqrt{2}}{2}\), constructed with only straightedge & compass, is the solution for the “CIRCLING THE CIRCLE” problem.

DISCUSSION AND CONCLUSION

Can mathematicians use a compass and a straightedge to construct a circle having an area equal to a given square exactly/accurately?

This question is the same as for constructing the mentioned circle or finding an accurate solution for the new challenge Mathematics problem “CIRCLING THE SQUARE”. Surprisingly, only I, myself, was still working on this question because the challenge problem had just arisen contemporarily when I ended up my original research article “Exact Squaring The Circle with Straightedge and Compass by Secondary Geometry”, published by IJMST in June 2023 [6]. In 2017, Andras Mathé and Oleg Plihurko of the University of Warwick and Jonathan Noel of the University of Victoria were the latest authors who joined this ancient tradition challenge (Squaring The Circle problem). These authors showed how a circle can be squared by cutting it into pieces that can be visualized and drawn. This result builds on a rich history. Mathematicians named this method “the equidecomposition” but it is also theoretical proof that the problem can be solved (without a straightedge & compass) by cutting the circle into pieces and rearranging it into a square and none knows the number of pieces. Nevertheless, no computers existed in the ancient Greek era [25]. In June 2023, I solved exactly and accurately the ancient Greek problem that has challenged mathematicians for over 2500 years - "Squaring The Circle" with a straightedge & compass.

Then, the International Journal Of Mathematics Trends And Technology (IJMTT) published this paper on 23 June 2023 [6].

After the paper was published, an idea derived from the solution to create a new mathematical challenge, which had not existed before. The idea is as follows:

“If we can square a given circle then how about to circle a given square, inversely/conversely”? The following diagram illustrates this concept idea:

“Squaring The Circle” “Circling The Square”

The “Analysis” method is applied correctly to Geometry to complete this research study to gain an exact/accurate solution to this new challenge “CIRCLING THE SQUARE” problem in Mathematics.

The results of my independent research show that the correct answer \((O, r)\), constructed by compass and straightedge, has the exact area \(a^2 = \pi r^2\); therefore if the given square to circle is a unit square \(a^2 = 1\), then in terms of geometry, \(\pi\) can be constructive/expressed by a circle with area \(\pi r^2 = 1\). This circle comes from the RULER of the “CIRCLING THE SQUARE” problem yielded by the given unit square. Subsequently, the exact geometric length of \(\pi = \frac{1}{\sqrt{2}}\) was determined. In practice, if the International Bureau of Weights and Measures (BIPM), the International System of Units, or any accurate
laser measurement is used to measure the arithmetic value \(r \) of the answer circle (O, r), we can use this r to measure as accurately as possible to obtain the arithmetic value of \(\pi = \frac{a}{r} \).

The above arithmetic value of \(\pi \) could be the nearest arithmetical value of the irrational number \(\pi \) ever seen.

My construction method is quite different from approximation and is based on using a straightedge and compass within secondary Geometry so that any secondary student can solve the problem for any given square. Moreover, this method shows that the value \(r = \frac{a^2}{\pi} \) can be expressed accurately, and the value \(\pi = \frac{a^2}{r} \), or \(\pi \in \mathbb{Q} \subset \mathbb{R} \) can also be expressed accurately in terms of Geometry. This Geometrical expression of the irrational number \(\pi \) could be an interesting field for mathematicians in the 21st century. In other words, algebraic geometry can express exactly any irrational number \(k \in \mathbb{R} \).

In addition, this research result can be used for further research in the “SPHERING THE CUBE” challenge, with only “a straightedge & a compass” in Euclidean Geometry.

Furthermore, the research also opens some new challenge problems which can be “CIRCLING THE EQUILATERAL TRIANGLE”, “CIRCLING THE REGULAR PENTAGON”, “CIRCLING THE REGULAR HEXAGON”, “CIRCLING THE REGULAR OCTAGON” etc., using a straightedge and compass.

Conflicts of Interest: The author declares that there is no conflict of interest regarding the publication of this paper.

Funding Statement: No funding from any financial bodies for this research.

Acknowledgements: I gratefully acknowledge the constructive suggestions of the friends and reviewers who participated in the evaluation of the developed theorems.

REFERENCES

Beatrix, Frédéric; 2022. “Squaring the circle like a medieval master mason”; Parabola; UNSW School of Mathematics and Statistics; 58 (2).

Crippa, Davide; (2019), “James Gregory and the impossibility of squaring the central conic sections”; The Impossibility of Squaring the Circle in the 17th Century. Springer International Publishing; pp. 35–91; doi:10.1007/978-3-030-01638-8_2; S2CID 132820288.

Fritsch, Rudolf; (1984); “The transcendence of \(\pi \) has been known for about a century, but who was the man who discovered it?”; Results in Mathematics; 7 (2): 164–183.

Fülső, Henrik; (2012); “Adam Adamandy Kochański’s approximations of \(\pi \): reconstruction of the algorithm”; The Mathematical Intelligencer; 34 (4): 40–45; arXiv:1111.1739;

Gregory, James; (1667). Vera Circuli et Hyperboles Quadratura … [The true squaring of the circle and of the hyperbola …]; Padua: Giacomo Cadorino; Available at: ETH Bibliothek (Zürich, Switzerland).

Herszen, Ronald B. and Towsley, Gary B.; (1994). “Squaring the circle: Paradoxi 33 and the poetics of geometry”; Traditio; 49; 95–125; doi:10.1017/S0362152900013015; JSTOR 27831895; S2CID 155844205.

Hobson, Ernest William; (1913); Squaring the Circle: A History of the Problem; Cambridge University Press; pp. 34–35.

https://doi.org/10.14445/22315737/ijMTT-V69ISP502 and Exact Angle Trisection with Straightedge and Compass by Secondary Geometry (ijmtjournal.org) & ijmtjournal.org/archive/ijmtt-v69isp502.

https://doi.org/10.14445/22315737/ijMTT-V69ISP506 and Exact Doubling The Cube with Straightedge and Compass by Euclidean Geometry (ijmtjournal.org).

Jagy, William C.; (1995); "Squaring circles in the hyperbolic plane" (PDF); The Mathematical Intelligencer. 17 (2): 31–36; doi:10.1007/BF03024895; S2CID 120481094.

Lindemann, F.; (1882); "Über die Zahl \(\pi \)" (On the number \(\pi \); Mathematical Annalen (in German); 20; 213–225; doi:10.1007/BF01446522; S2CID 120469397.

Otero, Daniel E.; (July 2010); "The Quadrature of the Circle and Hippocrates’ Lunes”; Convergence. Mathematical Association of America.

Rolli Wallisser; On Lambert’s proof of the irrationality of \(\pi \), Published by De Gruyter 2000;

Steve Nadis; 08/02/2022; An Ancient Geometry Problem Falls to New Mathematical Techniques, Geometry, Quanta Magazine;

Tran Dinh Son; 2023; “Exact Angle Trisection with Straightedge and Compass by Secondary Geometry,” International Journal of Mathematics Trends and Technology (IJMTT), vol. 69, no. 5, pp. 9-24, 2023; Crossref.

Tran Dinh Son; 2023; “Exact Doubling the Cube with Straightedge and Compass by Euclidean Geometry,” International Journal of Mathematics Trends and Technology (IJMTT), vol. 69, no. 8, pp. 45-54, 2023; Crossref.

Tran Dinh Son; 2023; “Exact Squaring the Circle with Straightedge and Compass by Secondary Geometry,” International Journal of Mathematics Trends and Technology (IJMTT) and Exact Squaring the Circle with Straightedge and Compass by Secondary Geometry.”

Wantzel, L.; (1837); "Recherches sur les moyens de reconnaître si un problème de géométrie peut se résoudre avec la règle et le compas" [Investigations into means of knowing if a problem of geometry can be solved with a straightedge and compass]; Journal de Mathématiques Pures et Appliquées (in French); 2: 366–372.

Wiesław, Witold; (2001); "Squaring the circle in XVI–XVIII centuries". In Fuchs, Eduard (ed.); Mathematics throughout the ages. Including papers from the 10th and 11th Novembertagung on the History of Mathematics held in Holbæk, October 28–31, 1999 and in Brno, November 2–5, 2000; Dějiny Matematiky/History of Mathematics. Vol. 17; Prague: Prometheus. pp. 7–20; MR 1872936.
